

Formal Analysis of GPU Programs with Atomics via Conflict-Directed Delay-Bounding

Wei-Fan Chiang

Joint work with Zvonimir Rakamarić, Ganesh Gopalakrishnan, and Guodong Li

Motivation

- Use of GPUs growing!
 - Extreme-Scale Computing, Mobile Devices,...
 - High Compute Rates, Parallelism
- This work : how to design correct GPU programs?

Contrast between CPUs and GPUs

Example: Increment Array Elements

Fine-grained threads scheduled to run like this: tid = 0, 1, 2, 3, ...

```
CUDA program
```

```
_global___ void inc_gpu(float* A, float b, int N) {
 int tid = blockIdx.x* blockDim x threadIdx.x;
 if (tid < N)
  A[tid] = A[tid] + b;
voidmain() {
 dim3dimBlock (blocksize);
 dim3dimGrid( ceil( N / (float)blocksize) );
 increment_gpu<<<dimGrid, dimBlock>>>(a, b,
```

GPU Computation Model

- Multi-threaded and shared memory
- Thread synchronization.
 - Barrier
 - Atomic operations
- Safety properties:
 - Races
 - Assertions Our focus!

- Multi-threaded and shared memory
- Thread synchronization.
 - Barrier
 - Atomic operations
- Safety properties:
 - Races
 - Assertions Our focus!

- Multi-threaded and shared memory
- Thread synchronization.
 - Barrier
 - Atomic operations
- Safety properties:
 - Races
 - Assertions Our focus!

- Multi-threaded and shared memory
- Thread synchronization.
 - Barrier
- Safety properties:
 - Races
 - Assertions Our focus!

- Multi-threaded and shared memory
- Thread synchronization.
 - Barrier
 - Atomic operations
- Safety properties:
 - Races
 - Assertions Our focus!

Schedules Are Equivalent in Race-free programs ("DRF theorems")

Schedules Are Equivalent in Race-free programs ("DRF theorems")

Schedules Are Equivalent in Race-free programs ("DRF theorems")

Sequential Scheduling [Attiya, 1994]

Race Detection by Single Schedule

Explore ONE schedule is sufficient to detect races if there is any. [Adve, 1991] [Li, PPOPP'12]

Race Pruning by Introducing Barriers

Barriers don't prevent Inter-block Race

Needs of Critical Sections

Atomics Based Synchronization Example

[Burtscher, 2011]

Atomics Based Synchronization Example

[Burtscher, 2011]

Number of Conflicts Could be Many!!

Schedules are not equivalent!!

Schedule Exploration is Needed!

- Previous work
 - Barrier based synchronization
 - Explore one schedule.
- Our work
 - Barrier+atomic based synchronization
 - Atomic operations introduce conflicts
 - Explore multiple schedules.
 - Need a good scheduling strategy.

Our Contributions

- Conflict-directed Delay-bounding (CD) scheduling strategy.
 - Checks safety properties with synchronizations using barriers+atomic.
- Operational semantics of CD scheduling.

Without a good search strategy →

Intuitions of CD Scheduling

By some schedule, we visit $X_1 \rightarrow X_2$ and $Y_1 \rightarrow Y_2$.

Intuitions of CD Scheduling

Find another schedule that we visit $X_2 \rightarrow X_1$ and $Y_2 \rightarrow Y_1$.

Background: Sequential Scheduling

Two Conflicts: $X_1 \rightarrow X_2$ and $Y_1 \rightarrow Y_2$.

CD Scheduling

CD Schedule: $X_2 \rightarrow X_1$ and $Y_2 \rightarrow Y_1$.

High-Level View of CD Scheduling

O-delay Schedule: D = []

Two Conflicts: $X_1 \rightarrow X_2$ and $Y_1 \rightarrow Y_2$.

1-delay Schedule: $D = [X_1]$

A conflict is detected after D = []: $Y_1 \rightarrow Y_2$.

2-delay Schedule: $D = [X_1, Y_1]$

1-delay Schedule: $D = [Y_1]$

No conflict is detected after D = []

Operational Semantics of CD

- Opsem of Scheduling given in our paper
 - Different scheduling options (e.g. which thread to run next) captured using uninterpreted functions
- Limitation of current CD approach:
 - Does not address unfair CUDA runtimes
 [Habermeir, Knapp, ESOP'13]
 - Will be addressed in our future work

Example: Buggy N-body Simulation

 We planted the following bug in N-body code [Burtscher, GCG'11]

```
1. v = tree[index];
   (a long section of code here...)
   if (v ≠ LOCK) then
    v = tree[index];
      if (v == atomicCAS(&tree[index], v, LOCK)) then
        assert(v ≠ LOCK);
                    Critical Section
        tree[index] = w; // w ≠ LOCK
```

Example: Buggy N-body Simulation

```
T0
1. v = tree[i];
2. if (v \neq LOCK)
                                   Line 2: v = 0
3. v = tree[index];
4. if (v == CAS(...))
                                Line 3: v = LOCK ≰₁
    assert(v ≠ LOCK);
                                     Line 4:
     tree[index] = w;
6.
                                                             Line 5:
                                v = tree[i] = LOCK
                                                        (tree[i] == LOCK)
```

Experiments: Bug-Free Benchmarks

Benchmark	LOC	No Heuristic		Heuristic	
		# schedules	result	# schedules	result
aMin	20	431	Verified	431	Verified
aMinUpdate	35	653	Verified	294	Verified
bintree	75	835	Verified	405	Verified
TSP	130	114	Verified	60	Verified
N-body	260	1195	Verified	336	Verified

- Heuristic: pick "conditional atomic operation" conflicts (atomicCAS)
- Errors are detected using user-provided assertions
- 3 blocks and 1 thread per block, delay-bound is 2
- Running times ranging from 5 to 5000 seconds

Experiments: Buggy Benchmarks

Benchmark	No He	uristic	Heuristic	
	# schedules	result	# schedules	result
aMin	107	Bug caught	107	Bug caught
aMinUpdate	6	Bug caught	4	Bug caught
bintree	14	Bug caught	202	Omission
TSP	4	Bug caught	4	Bug caught
N-body	448	Bug caught	126	Bug caught

Related Work

- Exploring Seq. Schedules under Race-Freedom
 - General Concurrency Arena:
 - Adve and Hill, '91
 - "DRF theorems" in Java Memory Model studies
 - GPU Arena:
 - Li and Gopalakrishnan, FSE'09
 - Tool : "PUG"
 - Li, Li, Gopalakrishnan, Rajan, Ghosh, PPoPP'12
 - Tool : "GKLEE"
 - Betts, Chong, Donaldson, Qadeer, and Thomson, SPLASH'12
 - Tool : "GPUVerify"

Related Work

- Scheduling Methods:
 - DPOR
 - Flanagan and Godefroid, POPL'05 (http://users.soe.ucsc.edu/~cormac/)
 - Sequentialization
 - Lal and Reps, CAV'08
 - Torre, Madhusudan, Parlato, CAV'09
 - Nagafi, Hu, Rakamaric', SPIN'10
 - Delay Bounding: Emmi, Qadeer, Rakamaric', POPL'11
- This work in comparison with above scheduling methods:
 - Specializes bounding strategy to exploit warp-level sequential scheduling (GKLEE, PPoPP'12)
 - exploits conflicts (Sen, PLDI'08) to schedule around CUDA Atomics

Summary

- Introduced <u>Conflict-directed Delay-bounded</u> (CD) scheduling search strategy for handling atomics
- Implemented in GKLEE
 - Finds bugs in realistic benchmarks
- Heuristic for picking relevant conflicts
 - Works well in practice

Future Work

- Extend CD scheduling to other contexts
 - Hybrid programming
 - Recursive calls in GPU kernels
- Address CUDA unfair runtimes
- Include other scheduling strategies such as exploiting thread symmetry

Thanks.

Question?

The following slides are backup slides.

Motivation **Hybrid Concurrent Programs Shared** Message **Passing Memory** CPU **GPU Sync. by Barriers** Sync. by **Barriers** + atomic

GPU Computation Model

GPU Computation Model

About Handling Warps

- Our current opsem is based on warp size = 1
- GPU (CUDA) programmers should not assume that warp size is fixed to a certain number
- Thus, assuming warp size = 1 in testing is a heuristic for identifying most races/bugs
- By incorporating the predicated form of CUDA semantics proposed in GPUVerify [Donaldson, 2012], our opsem could also handle warps

- Blocks and Threads are organized as a queue of queues
- I_a , I_b ,... are instructions. " T_0 : I_a " denotes that T_0 's current instruction is I_a
- hd(D) is the delay set of the current schedule, which is a queue of instructions

- The 1st thread of the 1st block in the queue is always first considered for scheduling
- Check if I_a is equal to I_x

- Precondition: $I_a = I_x$
 - Delay the execution of I_a
- Each instruction in hd(D) is only delayed once

- Precondition: $I_a \neq I_x$ and current instructions of all threads in the queue head are barriers, i.e., $I_a = I_b = I_c = barrier$
 - Schedule all threads in the queue head block

- Precondition: I_a ≠ I_x and there is a thread in the queue head whose current instruction is not a barrier
 - If I_a is not a barrier, execute it
 - Otherwise, the 1st thread of the 1st block (T₀) yields

Related Work: Other GPU Operational Semantics

- Modeling warp execution and divergence.
 - Predicated execution model [Alastair and Qadeer, 2013].
 - A GPU verification tool, GPUVerify, is based on this semantics.
 - Stack-based execution model [Habermaier and Knapp, 2013].
- Our operational semantics models sequential GPU simulation and scheduling strategies.

Comparison between CD Scheduling and Other Strategies

- Vs. Dynamic Partial Order Reduction [Flanagan and Godefroid, 2005]
 - CD scheduling priorities schedule explorations with detected conflicts.
- Vs. Race-directed [Sen, 2008]
 - CD scheduling bounds the # of contexts.
- Vs. Context-bounded [Qadeer, 2005]
 - CD scheduling decides preemption locations with detected conflicts.